Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1107323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926679

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.

2.
J Huntingtons Dis ; 10(3): 335-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151850

RESUMO

BACKGROUND: Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. OBJECTIVE: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington's disease pathology. METHODS: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. CONCLUSION: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington's disease pathology.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Imunoprecipitação , Camundongos , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinaptotagmina I , Espectrometria de Massas em Tandem
3.
Mol Cell Proteomics ; 18(9): 1705-1720, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31138642

RESUMO

Huntington's disease is caused by a polyglutamine repeat expansion in the huntingtin protein which affects the function and folding of the protein, and results in intracellular protein aggregates. Here, we examined whether this mutation leads to altered ubiquitination of huntingtin and other proteins in both soluble and insoluble fractions of brain lysates of the Q175 knock-in Huntington's disease mouse model and the Q20 wild-type mouse model. Ubiquitination sites are detected by identification of Gly-Gly (diGly) remnant motifs that remain on modified lysine residues after digestion. We identified K6, K9, K132, K804, and K837 as endogenous ubiquitination sites of soluble huntingtin, with wild-type huntingtin being mainly ubiquitinated at K132, K804, and K837. Mutant huntingtin protein levels were strongly reduced in the soluble fraction whereas K6 and K9 were mainly ubiquitinated. In the insoluble fraction increased levels of huntingtin K6 and K9 diGly sites were observed for mutant huntingtin as compared with wild type. Besides huntingtin, proteins with various roles, including membrane organization, transport, mRNA processing, gene transcription, translation, catabolic processes and oxidative phosphorylation, were differently expressed or ubiquitinated in wild-type and mutant huntingtin brain tissues. Correlating protein and diGly site fold changes in the soluble fraction revealed that diGly site abundances of most of the proteins were not related to protein fold changes, indicating that these proteins were differentially ubiquitinated in the Q175 mice. In contrast, both the fold change of the protein level and diGly site level were increased for several proteins in the insoluble fraction, including ubiquitin, ubiquilin-2, sequestosome-1/p62 and myo5a. Our data sheds light on putative novel proteins involved in different cellular processes as well as their ubiquitination status in Huntington's disease, which forms the basis for further mechanistic studies to understand the role of differential ubiquitination of huntingtin and ubiquitin-regulated processes in Huntington's disease.


Assuntos
Encéfalo/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Proteoma/metabolismo , Ubiquitina/metabolismo , Animais , Membrana Celular/metabolismo , Proteína Huntingtina/genética , Lisina/metabolismo , Camundongos Mutantes , Proteoma/análise , Solubilidade , Ubiquitinação , Fluxo de Trabalho
4.
J Proteome Res ; 17(1): 739-744, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29083911

RESUMO

COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.


Assuntos
Apresentação de Dados , Animais , Ontologias Biológicas , Carpas , Camundongos , Terminologia como Assunto , Interface Usuário-Computador , Peixe-Zebra
5.
Genome Biol ; 18(1): 221, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141654

RESUMO

Open Science is encouraged by the European Union and many other political and scientific institutions. However, scientific practice is proving slow to change. We propose, as early career researchers, that it is our task to change scientific research into open scientific research and commit to Open Science principles.


Assuntos
Bases de Dados como Assunto , Pesquisadores , Ciência
6.
Int Arch Allergy Immunol ; 174(3-4): 170-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130972

RESUMO

BACKGROUND: Dendritic cells (DCs) are the sentinels of the immune system. Upon recognition of a pathogen, they mature and migrate to draining lymph nodes to prime and polarize T cell responses. Although it is known that helminths and helminth-derived molecules condition DCs to polarize T helper (Th) cells towards Th2, the underlying mechanisms remain incompletely understood. OBJECTIVES: The aim of this study was to conduct a proteome analysis of helminth antigen-stimulated DCs in order to gain more insight into the cellular processes associated with their ability to polarize immune responses. METHODS: We analyzed the maturation and polarization of monocyte-derived DCs from 9 donors at 2 different time points after stimulation with different Th1- and Th2-polarizing pathogen-derived molecules. The samples were measured using liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry for relative quantitation. RESULTS: Lipopolysaccharide-induced maturation promoted the expression of proteins related to metabolic, cellular, and immune system processes. Th1-polarizing DCs, conditioned by IFN-γ during maturation, displayed accelerated maturation by differentially expressing cytoskeletal proteins and proteins involved in immune regulation. The stimulation of DCs with soluble egg antigens and omega-1 derived from Schistosoma mansoni, which are both Th2-inducing stimuli, increased 60S acidic ribosomal protein P2, and vesicle amine transferase 1 while decreasing the expression of proteins related to antigen processing and presentation. CONCLUSION: Our data indicate that not only proteins involved in the interaction between T cells and DCs at the level of the immunological synapse, but also those related to cellular metabolism and stress, may promote Th2 polarization.


Assuntos
Células Dendríticas/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Apresentação de Antígeno , Antígenos de Helmintos/imunologia , Diferenciação Celular , Células Cultivadas , Proteínas do Ovo/imunologia , Humanos , Evasão da Resposta Imune , Interferon gama/imunologia , Lipopolissacarídeos/imunologia , Proteômica
7.
Scientometrics ; 107: 385-398, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27122644

RESUMO

Scientific workflows organize the assembly of specialized software into an overall data flow and are particularly well suited for multi-step analyses using different types of software tools. They are also favorable in terms of reusability, as previously designed workflows could be made publicly available through the myExperiment community and then used in other workflows. We here illustrate how scientific workflows and the Taverna workbench in particular can be used in bibliometrics. We discuss the specific capabilities of Taverna that makes this software a powerful tool in this field, such as automated data import via Web services, data extraction from XML by XPaths, and statistical analysis and visualization with R. The support of the latter is particularly relevant, as it allows integration of a number of recently developed R packages specifically for bibliometrics. Examples are used to illustrate the possibilities of Taverna in the fields of bibliometrics and scientometrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...